首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Convolutional Neural Network for Object Detection in Garlic Root Cutting Equipment
  • 本地全文:下载
  • 作者:Ke Yang ; Baoliang Peng ; Fengwei Gu
  • 期刊名称:Foods
  • 电子版ISSN:2304-8158
  • 出版年度:2022
  • 卷号:11
  • 期号:15
  • DOI:10.3390/foods11152197
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:Traditional manual garlic root cutting is inefficient and can cause food safety problems. To develop food processing equipment, a novel and accurate object detection method for garlic using deep learning—a convolutional neural network—is proposed in this study. The you-only-look-once (YOLO) algorithm, which is based on lightweight and transfer learning, is the most advanced computer vision method for single large object detection. To detect the bulb, the YOLOv2 model was modified using an inverted residual module and residual structure. The modified model was trained based on images of bulbs with varied brightness, surface attachment, and shape, which enabled sufficient learning of the detector. The optimum minibatches and epochs were obtained by comparing the test results of different training parameters. Research shows that IRM-YOLOv2 is superior to the SqueezeNet, ShuffleNet, and YOLOv2 models of classical neural networks, as well as the YOLOv3 and YOLOv4 algorithm models. The confidence score, average accuracy, deviation, standard deviation, detection time, and storage space of IRM-YOLOv2 were 0.98228, 99.2%, 2.819 pixels, 4.153, 0.0356 s, and 24.2 MB, respectively. In addition, this study provides an important reference for the application of the YOLO algorithm in food research.
  • 关键词:convolutional neural network;YOLO;object detection;garlic root cutting;food safety control
国家哲学社会科学文献中心版权所有