首页    期刊浏览 2026年01月02日 星期五
登录注册

文章基本信息

  • 标题:On the First Eigenvalue of the Combinatorial Laplacian for a Graph
  • 本地全文:下载
  • 作者:Yoshiki OHNO ; Hajime URAKAWA
  • 期刊名称:Interdisciplinary Information Sciences
  • 印刷版ISSN:1340-9050
  • 电子版ISSN:1347-6157
  • 出版年度:1994
  • 卷号:1
  • 期号:1
  • 页码:33-46
  • DOI:10.4036/iis.1994.33
  • 出版社:The Editorial Committee of the Interdisciplinary Information Sciences
  • 摘要:The eigenvalues of the combinatorial Laplacian of graphs with boundaries and infinite graphs without boundary are studied. For a graph with boundary G =( V ∪∂ V , E ∪∂ E ), a sharp lower bound of the first eigenvalue λ1( G ) is given provided G satisfies a general condition, the so called non-separation property. For an infinite graph G without boundary, the bottom of the spectrum, i.e., the infimum of the spectrum of the combinatorial Laplacian of G , denoted λ0( G ), is estimated as

    λ0( G ) ≤ ¼ μ( G )2exp(μ( G )),

    where μ( G ) is the exponential growth of G . As a corollary, if G is subexponential, λ0( G )=0. On the contrary,λ0( G ) >0 is shown for a simply connected infinite graph G with degree ≥4 at each vertex.
  • 关键词:graph;combinatorial Laplacian;eigenvalue;exponential growth
国家哲学社会科学文献中心版权所有