首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Image Segmentation Based on Bethe Approximation for Gaussian Mixture Model
  • 本地全文:下载
  • 作者:Fan CHEN ; Kazuyuki TANAKA ; Tsuyoshi HORIGUCHI
  • 期刊名称:Interdisciplinary Information Sciences
  • 印刷版ISSN:1340-9050
  • 电子版ISSN:1347-6157
  • 出版年度:2005
  • 卷号:11
  • 期号:1
  • 页码:17-29
  • DOI:10.4036/iis.2005.17
  • 出版社:The Editorial Committee of the Interdisciplinary Information Sciences
  • 摘要:We propose an image segmentation algorithm under an expectation-maximum scheme using a Bethe approximation. In the stochastic image processing, the image data is usually modeled in terms of Markov random fields, which can be characterized by a Gibbs distribution. The Bethe approximation, which takes account of nearest-neighbor correlations, provides us with a better approximation to the Gibbs free energy than the commonly used mean-field approximation. We apply the Bethe approximation to the image segmentation problem and investigate its efficiency by numerical experiments. As a result, our approach shows better robustness and faster converging speed than those using the mean-field approximation.
  • 关键词:image segmentation;Bethe approximation;EM algorithm;Gaussian mixture model
国家哲学社会科学文献中心版权所有