首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Image Segmentation Using MAP-MRF Estimation and Support Vector Machine
  • 本地全文:下载
  • 作者:T. HOSAKA ; T. KOBAYASHI ; N. OTSU
  • 期刊名称:Interdisciplinary Information Sciences
  • 印刷版ISSN:1340-9050
  • 电子版ISSN:1347-6157
  • 出版年度:2007
  • 卷号:13
  • 期号:1
  • 页码:33-42
  • DOI:10.4036/iis.2007.33
  • 出版社:The Editorial Committee of the Interdisciplinary Information Sciences
  • 摘要:Image segmentation has recently been studied in a framework of maximum a posteriori estimation for the Markov random field, where the cost function representing pixel-wise likelihood and inter-pixel smoothness should be minimized. The common drawback of these studies is the decrease in performance when a foreground object and the background have similar colors. We propose the likelihood formulation in the cost function considering not only a single pixel but also its neighboring pixels, and utilizing the support vector machine to enhance the discrimination between foreground and background. The global optimal solution for our cost function can be realized by the graph cut algorithm. Experimental results show an excellent segmentation performance in many cases.
  • 关键词:image segmentation;MAP estimation;Markov random field;support vector machine;minimum cut algorithm
国家哲学社会科学文献中心版权所有