首页    期刊浏览 2025年06月15日 星期日
登录注册

文章基本信息

  • 标题:Estimating the Data Region Using Minimum and Maximum Values
  • 本地全文:下载
  • 作者:Kazuho WATANABE ; Sumio WATANABE
  • 期刊名称:Interdisciplinary Information Sciences
  • 印刷版ISSN:1340-9050
  • 电子版ISSN:1347-6157
  • 出版年度:2007
  • 卷号:13
  • 期号:2
  • 页码:151-161
  • DOI:10.4036/iis.2007.151
  • 出版社:The Editorial Committee of the Interdisciplinary Information Sciences
  • 摘要:In the field of pattern recognition or outlier detection, it is often necessary to estimate the region where data of a particular class are generated. In other words, it is required to accurately estimate the support of the distribution that generates the data. Considering the 1-dimensional distribution whose support is a finite interval, the data region is estimated effectively by the maximum value and the minimum value in the samples. Limiting distributions of these values have been studied in the extreme-value theory in statistics. In this research, we propose a method to estimate the data region using the maximum value and the minimum value in the samples. We show the average loss of the estimator and derive the optimally improved estimators for given loss functions. The method can be extended to estimate the higher dimensional input space.
  • 关键词:data region;extreme-value theory;asymptotic distribution;novelty detection
国家哲学社会科学文献中心版权所有