首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:An Introduction to Maximum Likelihood Estimation and Information Geometry
  • 本地全文:下载
  • 作者:Keiji MIURA
  • 期刊名称:Interdisciplinary Information Sciences
  • 印刷版ISSN:1340-9050
  • 电子版ISSN:1347-6157
  • 出版年度:2011
  • 卷号:17
  • 期号:3
  • 页码:155-174
  • DOI:10.4036/iis.2011.155
  • 出版社:The Editorial Committee of the Interdisciplinary Information Sciences
  • 摘要:In this paper, we review the maximum likelihood method for estimating the statistical parameters which specify a probabilistic model and show that it generally gives an optimal estimator with minimum mean square error asymptotically. Thus, for most applications in information sciences, the maximum likelihood estimation suffices. Fisher information matrix, which defines the orthogonality between parameters in a probabilistic model, naturally arises from the maximum likelihood estimation. As the inverse of the Fisher information matrix gives the covariance matrix for the estimation errors of the parameters, the orthogonalization of the parameters guarantees that the estimates of the parameters distribute independently from each other. The theory of information geometry provides procedures to diagonalize parameters globally or at all parameter values at least for the exponential and mixture families of distributions. The global orthogonalization gives a simplified and better view for statistical inference and, for example, makes it possible to perform a statistical test for each unknown parameter separately. Therefore, for practical applications, a good start is to examine if the probabilistic model under study belongs to these families.
  • 关键词:maximum likelihood estimation;information geometry;Fisher information matrix
国家哲学社会科学文献中心版权所有