首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Pseudo Temperature of Observed Data
  • 本地全文:下载
  • 作者:Muneki YASUDA
  • 期刊名称:Interdisciplinary Information Sciences
  • 印刷版ISSN:1340-9050
  • 电子版ISSN:1347-6157
  • 出版年度:2012
  • 卷号:18
  • 期号:2
  • 页码:185-188
  • DOI:10.4036/iis.2012.185
  • 出版社:The Editorial Committee of the Interdisciplinary Information Sciences
  • 摘要:A Boltzmann machine (BM) is a basic learning model forming a Markov random field, and many approximate learning algorithms for it so far. In the present paper, a new strategy for approximate BM learnings is proposed by introducing a temperature of observed data which controls a smoothness of empirical distribution. By controlling the temperature, one can obtain better solutions to BM learning with an existing approximate learning algorithm.
国家哲学社会科学文献中心版权所有