首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Multiple types of navigational information are independently encoded in the population activities of the dentate gyrus neurons
  • 本地全文:下载
  • 作者:Tomoyuki Murano ; Ryuichi Nakajima ; Akito Nakao
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:32
  • DOI:10.1073/pnas.2106830119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance In this study, we found that multiple types of information (position, speed, and motion direction in an open field and current and future location in a T-maze) are independently encoded in the overlapping, but different, populations of dentate gyrus (DG) neurons. This computational nature of the independent distribution of information in neural circuits is newly found not only in the DG, but also in other hippocampal regions. The dentate gyrus (DG) plays critical roles in cognitive functions, such as learning, memory, and spatial coding, and its dysfunction is implicated in various neuropsychiatric disorders. However, it remains largely unknown how information is represented in this region. Here, we recorded neuronal activity in the DG using Ca 2+ imaging in freely moving mice and analyzed this activity using machine learning. The activity patterns of populations of DG neurons enabled us to successfully decode position, speed, and motion direction in an open field, as well as current and future location in a T-maze, and each individual neuron was diversely and independently tuned to these multiple information types. Our data also showed that each type of information is unevenly distributed in groups of DG neurons, and different types of information are independently encoded in overlapping, but different, populations of neurons. In alpha-calcium/calmodulin-dependent kinase II (αCaMKII) heterozygous knockout mice, which present deficits in spatial remote and working memory, the decoding accuracy of position in the open field and future location in the T-maze were selectively reduced. These results suggest that multiple types of information are independently distributed in DG neurons.
  • 关键词:endentate gyruscalcium imagingmachine learning
国家哲学社会科学文献中心版权所有