首页    期刊浏览 2024年10月04日 星期五
登录注册

文章基本信息

  • 标题:A Pleistocene legacy structures variation in modern seagrass ecosystems
  • 本地全文:下载
  • 作者:J. Emmett Duffy ; John J. Stachowicz ; Pamela L. Reynolds
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:32
  • DOI:10.1073/pnas.2121425119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance Sustaining biodiversity and ecosystems in the long term depends on their adjustment to a rapidly changing climate. By characterizing the structure of the marine plant eelgrass and associated communities at 50 sites across its broad range, we found that eelgrass growth form and biomass retain a legacy of Pleistocene range shifts and genetic bottlenecks that in turn affect the biomass of algae and invertebrates that fuel coastal food webs. The ecosystem-level effects of this ancient evolutionary legacy are comparable to or stronger than effects of current environmental forcing, suggesting that this economically important ecosystem may be unable to keep pace with rapid global change. Distribution of Earth’s biomes is structured by the match between climate and plant traits, which in turn shape associated communities and ecosystem processes and services. However, that climate–trait match can be disrupted by historical events, with lasting ecosystem impacts. As Earth’s environment changes faster than at any time in human history, critical questions are whether and how organismal traits and ecosystems can adjust to altered conditions. We quantified the relative importance of current environmental forcing versus evolutionary history in shaping the growth form (stature and biomass) and associated community of eelgrass ( Zostera marina), a widespread foundation plant of marine ecosystems along Northern Hemisphere coastlines, which experienced major shifts in distribution and genetic composition during the Pleistocene. We found that eelgrass stature and biomass retain a legacy of the Pleistocene colonization of the Atlantic from the ancestral Pacific range and of more recent within-basin bottlenecks and genetic differentiation. This evolutionary legacy in turn influences the biomass of associated algae and invertebrates that fuel coastal food webs, with effects comparable to or stronger than effects of current environmental forcing. Such historical lags in phenotypic acclimatization may constrain ecosystem adjustments to rapid anthropogenic climate change, thus altering predictions about the future functioning of ecosystems.
  • 关键词:enbiogeographyclimatefoundation speciesgenetic structure
国家哲学社会科学文献中心版权所有