首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:fMRI spectral signatures of sleep
  • 本地全文:下载
  • 作者:Chen Song ; Melanie Boly ; Enzo Tagliazucchi
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:30
  • DOI:10.1073/pnas.2016732119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance The conventional wisdom that sleep is a global state, affecting the whole brain uniformly and simultaneously, was overturned by the discovery of local sleep, where individual neuronal populations were found to be asleep and the rest of the brain awake. However, due to the difficulty of monitoring local neuronal states in humans, our understanding of local sleep remains limited. Using simultaneous functional MRI (fMRI) and electroencephalography, we find that the oscillations of brain hemodynamic activity provide signatures of sleep at a local neuronal population level. We show that the fMRI signatures of sleep can be employed to monitor local neuronal states and investigate which brain regions are the first to fall asleep or wake up at wake–sleep transitions. Sleep can be distinguished from wake by changes in brain electrical activity, typically assessed using electroencephalography (EEG). The hallmark of nonrapid-eye-movement (NREM) sleep is the shift from high-frequency, low-amplitude wake EEG to low-frequency, high-amplitude sleep EEG dominated by spindles and slow waves. Here we identified signatures of sleep in brain hemodynamic activity, using simultaneous functional MRI (fMRI) and EEG. We found that, at the transition from wake to sleep, fMRI blood oxygen level–dependent (BOLD) activity evolved from a mixed-frequency pattern to one dominated by two distinct oscillations: a low-frequency (<0.1 Hz) oscillation prominent in light sleep and correlated with the occurrence of spindles, and a high-frequency oscillation (>0.1 Hz) prominent in deep sleep and correlated with the occurrence of slow waves. The two oscillations were both detectable across the brain but exhibited distinct spatiotemporal patterns. During the falling-asleep process, the low-frequency oscillation first appeared in the thalamus, then the posterior cortex, and lastly the frontal cortex, while the high-frequency oscillation first appeared in the midbrain, then the frontal cortex, and lastly the posterior cortex. During the waking-up process, both oscillations disappeared first from the thalamus, then the frontal cortex, and lastly the posterior cortex. The BOLD oscillations provide local signatures of spindle and slow wave activity. They may be employed to monitor the regional occurrence of sleep or wakefulness, track which regions are the first to fall asleep or wake up at the wake–sleep transitions, and investigate local homeostatic sleep processes.
  • 关键词:ensleepfMRI-EEGBOLD oscillationswake–sleep transitions
国家哲学社会科学文献中心版权所有