首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Assessing Smoking Status and Risk of SARS-CoV-2 Infection: A Machine Learning Approach among Veterans
  • 本地全文:下载
  • 作者:Alice B. S. Nono Djotsa ; Drew A. Helmer ; Catherine Park
  • 期刊名称:Healthcare
  • 电子版ISSN:2227-9032
  • 出版年度:2022
  • 卷号:10
  • 期号:7
  • DOI:10.3390/healthcare10071244
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:The role of smoking in the risk of SARS-CoV-2 infection is unclear. We used a retrospective cohort design to study data from veterans’ Electronic Medical Record to assess the impact of smoking on the risk of SARS-CoV-2 infection. Veterans tested for the SARS-CoV-2 virus from 02/01/2020 to 02/28/2021 were classified as: Never Smokers (NS), Former Smokers (FS), and Current Smokers (CS). We report the adjusted odds ratios (aOR) for potential confounders obtained from a cascade machine learning algorithm. We found a 19.6% positivity rate among 1,176,306 veterans tested for SARS-CoV-2 infection. The positivity proportion among NS (22.0%) was higher compared with FS (19.2%) and CS (11.5%). The adjusted odds of testing positive for CS (aOR:0.51; 95%CI: 0.50, 0.52) and FS (aOR:0.89; 95%CI:0.88, 0.90) were significantly lower compared with NS. Four pre-existing conditions, including dementia, lower respiratory infections, pneumonia, and septic shock, were associated with a higher risk of testing positive, whereas the use of the decongestant drug phenylephrine or having a history of cancer were associated with a lower risk. CS and FS compared with NS had lower risks of testing positive for SARS-CoV-2. These findings highlight our evolving understanding of the role of smoking status on the risk of SARS-CoV-2 infection.
  • 关键词:enSARS Coronavirus 2smokingmachine learningveteran
国家哲学社会科学文献中心版权所有