首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Generalized N-Dimensional Principal Component Analysis (GND-PCA) Based Statistical Appearance Modeling of Facial Images with Multiple Modes
  • 本地全文:下载
  • 作者:Xu Qiao ; Rui Xu ; Yen-Wei Chen
  • 期刊名称:Information and Media Technologies
  • 电子版ISSN:1881-0896
  • 出版年度:2009
  • 卷号:4
  • 期号:4
  • 页码:999-1009
  • DOI:10.11185/imt.4.999
  • 出版社:Information and Media Technologies Editorial Board
  • 摘要:This paper introduces a framework called generalized N-dimensional principal component analysis (GND-PCA) for statistical appearance modeling of facial images with multiple modes including different people, different viewpoint and different illumination. The facial images with multiple modes can be considered as high-dimensional data. GND-PCA can represent the high-order dimensional data more efficiently. We conduct extensive experiments on MaVIC Database (KAO-Ritsumeikan Multi-angle View, Illumination and Cosmetic Facial Database) to evaluate the effectiveness of the proposed algorithm and compared the conventional ND-PCA in terms of reconstruction error. The results indicated that the extraction of data features is computationally more efficient using GND-PCA than PCA and ND-PCA.
国家哲学社会科学文献中心版权所有