首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:Output Divergence Criterion for Active Learning in Collaborative Settings
  • 本地全文:下载
  • 作者:Neil Rubens ; Ryota Tomioka ; Masashi Sugiyama
  • 期刊名称:Information and Media Technologies
  • 电子版ISSN:1881-0896
  • 出版年度:2010
  • 卷号:5
  • 期号:1
  • 页码:119-128
  • DOI:10.11185/imt.5.119
  • 出版社:Information and Media Technologies Editorial Board
  • 摘要:We address the task of active learning for linear regression models in collaborative settings. The goal of active learning is to select training points that would allow accurate prediction of output values. We propose a new active learning criterion that is aimed at directly improving the accuracy of the output value estimation by analyzing the effect of the new training points on the estimates of the output values. The advantages of the proposed method are highlighted in collaborative settings, in which most of the data points are missing, and the number of training data points is much smaller than the number of the parameters of the model.
国家哲学社会科学文献中心版权所有