首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Interest Point Detection Based on Stochastically Derived Stability
  • 本地全文:下载
  • 作者:Ukrit Watchareeruetai ; Akisato Kimura ; Robert Cheng Bao
  • 期刊名称:Information and Media Technologies
  • 电子版ISSN:1881-0896
  • 出版年度:2012
  • 卷号:7
  • 期号:1
  • 页码:256-267
  • DOI:10.11185/imt.7.256
  • 出版社:Information and Media Technologies Editorial Board
  • 摘要:We propose a novel framework called StochasticSIFT for detecting interest points (IPs) in video sequences. The proposed framework incorporates a stochastic model considering the temporal dynamics of videos into the SIFT detector to improve robustness against fluctuations inherent to video signals. Instead of detecting IPs and then removing unstable or inconsistent IP candidates, we introduce IP stability derived from a stochastic model of inherent fluctuations to detect more stable IPs. The experimental results show that the proposed IP detector outperforms the SIFT detector in terms of repeatability and matching rates.
国家哲学社会科学文献中心版权所有