首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Salient Object Detection Based on Direct Density-ratio Estimation
  • 本地全文:下载
  • 作者:Masao Yamanaka ; Masakazu Matsugu ; Masashi Sugiyama
  • 期刊名称:Information and Media Technologies
  • 电子版ISSN:1881-0896
  • 出版年度:2013
  • 卷号:8
  • 期号:4
  • 页码:929-936
  • DOI:10.11185/imt.8.929
  • 出版社:Information and Media Technologies Editorial Board
  • 摘要:Detection of salient objects in images has been an active area of research in the computer vision community. However, existing approaches tend to perform poorly in noisy environments because probability density estimation involved in the evaluation of visual saliency is not reliable. Recently, a novel machine learning approach that directly estimates the ratio of probability densities was demonstrated to be a promising alternative to density estimation. In this paper, we propose a salient object detection method based on direct density-ratio estimation, and demonstrate its usefulness in experiments.
  • 关键词:salient object detection;direct density-ratio estimation;relative density-ratio estimation;Shannon entropy;density estimation
国家哲学社会科学文献中心版权所有