首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Detection of Activities and Events without Explicit Categorization
  • 本地全文:下载
  • 作者:Masao Yamanaka ; Masakazu Matsugu ; Masashi Sugiyama
  • 期刊名称:Information and Media Technologies
  • 电子版ISSN:1881-0896
  • 出版年度:2013
  • 卷号:8
  • 期号:4
  • 页码:937-943
  • DOI:10.11185/imt.8.937
  • 出版社:Information and Media Technologies Editorial Board
  • 摘要:We propose a method of unsupervised event detection from a video that compares probability distributions of past and current video sequence data in a sequential and hierarchical way. Because estimation of probability distributions is known to be difficult, naively comparing probability distributions via probability distribution estimation tends to be unreliable in practice. To cope with this problem, we use the state-of-the-art machine learning technique called density ratio estimation : The ratio of probability densities is directly estimated without density estimation, and thus probability distributions can be compared in a reliable way. Through experiments on a walking scene and a tennis match, we demonstrate the usefulness of the proposed approach.
  • 关键词:event detection;direct density-ratio estimation;cubic higher-order local auto-correlation
国家哲学社会科学文献中心版权所有