出版社:Information and Media Technologies Editorial Board
摘要:Abduction is desirable for many natural language processing (NLP) tasks. While recent advances in large-scale knowledge acquisition warrant applying abduction with large knowledge bases to real-life NLP problems, as of yet, no existing approach to abduction has achieved the efficiency necessary to be a practical solution for large-scale reasoning on real-life problems. In this paper, we propose an efficient solution for large-scale abduction. The contributions of our study are as follows: (i) we propose an efficient method of cost-based abduction in first-order predicate logic that avoids computationally expensive grounding procedures; (ii) we formulate the best-explanation search problem as an integer linear programming optimization problem, making our approach extensible; (iii) we show how cutting plane inference, which is an iterative optimization strategy developed in operations research, can be applied to make abduction in first-order logic tractable; and (iv) the abductive inference engine presented in this paper is made publicly available.
关键词:Cost-based Abduction;Integer Linear Programming;Discourse Processing;Interpretation as Abduction