首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Cohesin ATPase activities regulate DNA binding and coiled-coil configuration
  • 本地全文:下载
  • 作者:Xingya Xu ; Ryuta Kanai ; Li Wang
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:33
  • DOI:10.1073/pnas.2208004119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance Cohesin is a heteropentameric protein complex consisting of two structural maintenance of chromosomes (SMC) subunits and three non-SMC subunits. The two SMC subunits form a heterodimer with an ATPase head and hinge that are connected by long coiled coils. Isolation of ATPase mutants followed by comprehensive identification of suppressor mutations in SMC subunits that can bypass ATPase defects was performed. Locations and properties of mutant alleles reflect how ATPase activities could be compromised by structural adaptation. ATP-driven conformational changes may enhance DNA anchoring by the head, alter interactions of coiled coils at the head with other subunits for DNA to go through, and fold/extend coiled coils near break sites around midpoint to bring together DNA elements far from each other. The cohesin complex is required for sister chromatid cohesion and genome compaction. Cohesin coiled coils (CCs) can fold at break sites near midpoints to bring head and hinge domains, located at opposite ends of coiled coils, into proximity. Whether ATPase activities in the head play a role in this conformational change is yet to be known. Here, we dissected functions of cohesin ATPase activities in cohesin dynamics in Schizosaccharomyces pombe. Isolation and characterization of cohesin ATPase temperature-sensitive (ts) mutants indicate that both ATPase domains are required for proper chromosome segregation. Unbiased screening of spontaneous suppressor mutations rescuing the temperature lethality of cohesin ATPase mutants identified several suppressor hotspots in cohesin that located outside of ATPase domains. Then, we performed comprehensive saturation mutagenesis targeted to these suppressor hotspots. Large numbers of the identified suppressor mutations indicated several different ways to compensate for the ATPase mutants: 1) Substitutions to amino acids with smaller side chains in coiled coils at break sites around midpoints may enable folding and extension of coiled coils more easily; 2) substitutions to arginine in the DNA binding region of the head may enhance DNA binding; or 3) substitutions to hydrophobic amino acids in coiled coils, connecting the head and interacting with other subunits, may alter conformation of coiled coils close to the head. These results reflect serial structural changes in cohesin driven by its ATPase activities potentially for packaging DNAs.
  • 关键词:encohesinATPasesuppressor screenDNA bindingcoiled coil
国家哲学社会科学文献中心版权所有