期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2022
卷号:119
期号:33
DOI:10.1073/pnas.2204146119
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Significance
Because microbiome research generally focuses on a single host or habitat, we know comparatively little about the diversity and distribution of microbiomes at a landscape scale. Our study demonstrates that most of the microbial diversity present within a watershed is maintained within environmental substrates like soil or stream water, and microbiomes of organisms are generally subsets of those that are lower on the food chain. This result challenges the notion that sources of microbial inoculum are likeliest derived from close relatives. By identifying sources of shared microbial diversity within the landscape, we can better understand the origins and assembly processes of symbiotic microbes and how this might abet global conservation, restoration, or bio-engineering goals, such as preserving biodiversity and ecosystem services.
Microbes are found in nearly every habitat and organism on the planet, where they are critical to host health, fitness, and metabolism. In most organisms, few microbes are inherited at birth; instead, acquiring microbiomes generally involves complicated interactions between the environment, hosts, and symbionts. Despite the criticality of microbiome acquisition, we know little about where hosts’ microbes reside when not in or on hosts of interest. Because microbes span a continuum ranging from generalists associating with multiple hosts and habitats to specialists with narrower host ranges, identifying potential sources of microbial diversity that can contribute to the microbiomes of unrelated hosts is a gap in our understanding of microbiome assembly. Microbial dispersal attenuates with distance, so identifying sources and sinks requires data from microbiomes that are contemporary and near enough for potential microbial transmission. Here, we characterize microbiomes across adjacent terrestrial and aquatic hosts and habitats throughout an entire watershed, showing that the most species-poor microbiomes are partial subsets of the most species-rich and that microbiomes of plants and animals are nested within those of their environments. Furthermore, we show that the host and habitat range of a microbe within a single ecosystem predicts its global distribution, a relationship with implications for global microbial assembly processes. Thus, the tendency for microbes to occupy multiple habitats and unrelated hosts enables persistent microbiomes, even when host populations are disjunct. Our whole-watershed census demonstrates how a nested distribution of microbes, following the trophic hierarchies of hosts, can shape microbial acquisition.