首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Structure-preserving discretization of a coupled Allen-Cahn and heat equation system
  • 本地全文:下载
  • 作者:Antoine Bendimerad-Hohl ; Ghislain Haine ; Denis Matignon
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2022
  • 卷号:55
  • 期号:18
  • 页码:99-104
  • DOI:10.1016/j.ifacol.2022.08.037
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractEutectic freeze crystallisation is a promising way of purifying water for it may require less energy than other methods. In order to simulate such a process, phase field models such as Allen-Cahn and Cahn-Hilliard can be used. In this paper, a port-Hamiltonian formulation of the Allen-Cahn equations is used and coupled to heat conduction, which allows for a thermodynamically consistent system to be written with the help of the entropy functional. In a second part, the Partitioned Finite Element Method, a structure-preserving spatial discretization method, is applied to the Allen-Cahn equation; it gives rise to an exact free energy balance at the discrete level. Finally some numerical results are presented.
  • 关键词:Keywordsport-Hamiltonian systemsPartitioned Finite Element MethodPhase FieldDiffuse InterfaceSolidification processEntropy
国家哲学社会科学文献中心版权所有