首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Towards Programming Adaptive Linear Neural Networks Through Chemical Reaction Networks
  • 本地全文:下载
  • 作者:Yuzhen Fan ; Xiaoyu Zhang ; Chuanhou Gao
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2022
  • 卷号:55
  • 期号:18
  • 页码:7-13
  • DOI:10.1016/j.ifacol.2022.08.022
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper is concerned with programming adaptive linear neural networks (ALNNs) using chemical reaction networks (CRNs) equipped with mass-action kinetics. Through individually programming the forward propagation and the backpropagation of ALNNs, and also utilizing the permeation walls technique, we construct a powerful CRN possessing the function of ALNNs, especially having the role of automatic computation. We also provide theoretical analysis and a case study to support our construction. The results will potentially impact the development of synthetic biology, molecular computer, and artificial intelligence.
  • 关键词:KeywordsChemical reaction networksMass-action kineticsAdaptive linear neural networksProgrammingGlobal exponential stability
国家哲学社会科学文献中心版权所有