首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:FORECASTING COVID-19 IN INDONESIA WITH VARIOUS TIME SERIES MODELS
  • 本地全文:下载
  • 作者:Gumgum Darmawan ; Dedi Rosadi ; Budi Nurani Ruchjana
  • 期刊名称:MEDIA STATISTIKA
  • 印刷版ISSN:1979-3693
  • 电子版ISSN:2477-0647
  • 出版年度:2022
  • 卷号:15
  • 期号:1
  • 页码:83-93
  • DOI:10.14710/medstat.15.1.83-93
  • 语种:English
  • 出版社:MEDIA STATISTIKA
  • 摘要:In this study, Covid-19 modeling in Indonesia is carried out using a time series model. The time series model used is the time series model for discrete data. These models consist of Feedforward Neural Network (FFNN), Error, Trend, and Seasonal (ETS), Singular Spectrum Analysis (SSA), Fuzzy Time Series (FTS), Generalized Autoregression Moving Average (GARMA), and Bayesian Time Series. Based on the results of forecast accuracy calculation using MAPE (Mean Absolute Percentage Error) as model evaluation for confirmed data, the most accurate case models is the bayesian model of 0.04%, while all recovered cases yield MAPE 0.05%, except for FTS = 0.06%. For data for death cases SSA and Bayesian Models, the best with MAPE is 0.07%.
国家哲学社会科学文献中心版权所有