首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Efficient computational stochastic framework for performance optimization of E-waste management plant
  • 本地全文:下载
  • 作者:Naveen Kumar ; Deepak Sinwar ; Monika Saini
  • 期刊名称:Journal of King Saud University @?C Computer and Information Sciences
  • 印刷版ISSN:1319-1578
  • 出版年度:2022
  • 卷号:34
  • 期号:8
  • 页码:4712-4728
  • 语种:English
  • 出版社:Elsevier
  • 摘要:Purpose: Reliability and maintainability are the key system effectiveness measures in process and manufacturing industries, and treatment plants, especially in E-waste management plants. The present work is proposed with a motto to develop a stochastic framework for the e-waste management plant to optimize its availability integrated with reliability, availability, maintainability, and dependability (RAMD) measures and Markovian analysis to estimate the steady-state availability of the E-waste management plant. In the analysis an effort is also made to identify the best performing algorithm for availability optimization of the e-waste plant. Methodology: A stochastic model for a particular plant is developed and its availability is optimized using various metaheuristic approaches like a genetic algorithm (GA), particle swarm optimization (PSO), and differential evolutions (DE). The most sensitive component is identified using RAMD methodology while the effect of deviation in various failure and repair rates are observed by the proposed model. The failure and repair rates follow an exponential distribution. All time-dependent random variables are statistically independent. Originality/Novelties: A novel stochastic model is presented for an e-waste management plant and optimum availability is obtained using metaheuristic approaches. The proposed methodology is not so far discussed in the reliability analysis of process industries. Findings: The numerical results of the proposed model compared to identify the most efficient algorithm. It is observed that genetic algorithm provides the maximum value (0.92330969) of availability at a population size 2500 after 500 iterations. PSO algorithm attained the maximum value (0.99996744) of availability just after 50 iterations and 100 population size. So, its rate of convergence is faster than GA. The optimum value of availability is 0.99997 using differential evolution after 500 iterations and population size of more than 1000. These findings are very beneficial for system designers. Practical Implications: The proposed methodology can be utilized to find the reliability measures of other process industries.
国家哲学社会科学文献中心版权所有