首页    期刊浏览 2024年10月05日 星期六
登录注册

文章基本信息

  • 标题:Reduced pressure effects on smoke temperature, CO concentration and smoke extraction in tunnel fires with longitudinal ventilation and vertical shaft
  • 本地全文:下载
  • 作者:Jie Wang ; Xiaowei Kong ; Yongjie Fan
  • 期刊名称:Case Studies in Thermal Engineering
  • 印刷版ISSN:2214-157X
  • 电子版ISSN:2214-157X
  • 出版年度:2022
  • 卷号:37
  • 页码:1-12
  • 语种:English
  • 出版社:Elsevier B.V.
  • 摘要:Nowadays, high-altitude tunnels at reduced pressure are emerging in the world's road network. A better understanding of the temperature and CO concentration distribution as well as the shaft extraction performance during tunnel fires with combined longitudinal ventilation and shaft exhaust under reduced ambient pressure is particularly crucial for the tunnel fire protection design. Series of tunnel fire simulations were carried out with ambient pressures of 50 kPa–101 kPa, fire heat release rates (HRRs) of 3 MW and 10 MW, and longitudinal ventilation velocities of 0 m/s to 2 m/s. The results show that the reduced ambient pressure enhances the difference in vertical and longitudinal distribution of CO concentration and smoke temperature, while the longitudinal ventilation gradually weakens this difference in longitudinal distribution. The natural exhaust shaft reduces the difference in vertical distribution but increases the difference in longitudinal distribution. As the reduction of ambient pressure, the smoke extraction efficiency of the shaft will increase slowly. Longitudinal ventilation can enhance the shaft's smoke extraction performance, but the general smoke extraction efficiency of the shaft deteriorates with the increasing longitudinal ventilation velocity. This study provides a fundamental reference for tunnel natural ventilation system under different ambient pressures, particularly in high-altitude tunnel fires.
  • 关键词:Reduced pressure;Shaft;Carbon monoxide concentration;Smoke extraction performance;Longitudinal ventilation velocity;Tunnel fire
国家哲学社会科学文献中心版权所有