首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Regime shifts, trends, and variability of lake productivity at a global scale
  • 本地全文:下载
  • 作者:Luis J. Gilarranz ; Anita Narwani ; Daniel Odermatt
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:35
  • DOI:10.1073/pnas.2116413119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance Lakes can change dramatically following a slow change in conditions. They can abruptly shift from being oligotrophic to eutrophic or vice versa, in what is called a regime shift. Despite the important consequences for ecosystems and human activities of abrupt shifts, we do not know how frequent they are or how they are distributed globally. To answer these questions, we analyze lake productivity dynamics of 1,015 lakes worldwide. Our results show few experienced regime shifts, yet the occurrence of observed regime shifts is increasing over time. Our analysis' global scope allows us to better understand the occurrence of regime shifts and the socioeconomic drivers associated with them. This knowledge will help manage lakes' response to global change. Lakes are often described as sentinels of global change. Phenomena like lake eutrophication, algal blooms, or reorganization in community composition belong to the most studied ecosystem regime shifts. However, although regime shifts have been well documented in several lakes, a global assessment of the prevalence of regime shifts is still missing, and, more in general, of the factors altering stability in lake status, is missing. Here, we provide a first global assessment of regime shifts and stability in the productivity of 1,015 lakes worldwide using trophic state index (TSI) time series derived from satellite imagery. We find that 12.8% of the lakes studied show regime shifts whose signatures are compatible with tipping points, while the number of detected regime shifts from low to high TSI has increased over time. Although our results suggest an overall stable picture for global lake dynamics, the limited instability signatures do not mean that lakes are insensitive to global change. Modeling the interaction between lake climatic, geophysical, and socioeconomic features and their stability properties, we find that the probability of a lake experiencing a tipping point increases with human population density in its catchment, while it decreases as the gross domestic product of that population increases. Our results show how quantifying lake productivity dynamics at a global scale highlights socioeconomic inequalities in conserving natural environments.
  • 关键词:enregime shiftremote sensingecological stabilityglobal changetrophic state index
国家哲学社会科学文献中心版权所有