首页    期刊浏览 2024年07月07日 星期日
登录注册

文章基本信息

  • 标题:Nucleotide excision repair removes thymidine analog 5-ethynyl-2′-deoxyuridine from the mammalian genome
  • 本地全文:下载
  • 作者:Li Wang ; Xuemei Cao ; Yanyan Yang
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:35
  • DOI:10.1073/pnas.2210176119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance We discovered that the thymidine analog EdU, which is widely used in the analysis of DNA replication, DNA repair, and cell proliferation, is processed as “damage” in the human genome by the nucleotide excision repair system. EdU is unique in inducing DNA strand break and cell death of transformed cell lines. Our finding that EdU in DNA is processed in human cells as damage by nucleotide excision repair raises the possibility that such reaction causes a futile cycle of excision and reincorporation into the repair patch, leading to eventual cell death. Such a futile cycle leading to apoptosis makes EdU a potential candidate for the treatment of glioblastomas without serious side effects on postmitotic normal neural cells of the brain. Nucleotide excision repair is the principal mechanism for removing bulky DNA adducts from the mammalian genome, including those induced by environmental carcinogens such as UV radiation, and anticancer drugs such as cisplatin. Surprisingly, we found that the widely used thymidine analog EdU is a substrate for excision repair when incorporated into the DNA of replicating cells. A number of thymidine analogs were tested, and only EdU was a substrate for excision repair. EdU excision was absent in repair-deficient cells, and in vitro, DNA duplexes bearing EdU were also substrates for excision by mammalian cell-free extracts. We used the excision repair sequencing (XR-seq) method to map EdU repair in the human genome at single-nucleotide resolution and observed that EdU was excised throughout the genome and was subject to transcription-coupled repair as evidenced by higher repair rates in the transcribed strand (TS) relative to the nontranscribed strand (NTS) in transcriptionally active genes. These properties of EdU, combined with its cellular toxicity and ability to cross the blood–brain barrier, make it a potential candidate for treating cancers of the brain, a tissue that typically demonstrates limited replication in adults.
  • 关键词:enexcision repair5-ethynyl-2′-deoxyuridineXR-seqbrain cancer
国家哲学社会科学文献中心版权所有