首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Injury-induced MAPK activation triggers body axis formation in  Hydra by default Wnt signaling
  • 本地全文:下载
  • 作者:Anja Tursch ; Natascha Bartsch ; Moritz Mercker
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:35
  • DOI:10.1073/pnas.2204122119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance Wnt signaling pathways are found exclusively in animal systems. They are of crucial importance for development, cell differentiation, and tumorigenesis. Wnt signaling pathways are also instrumental for regenerative processes from Hydra to humans. Here we show that Wnt signaling is activated by default after an injury as a consequence of generic mitogen-activated protein kinase phosphorylation to drive tissues into a regeneration-competent state. Positional specification at later stages is achieved by a tissue-dependent sensitivity to the generic wound signals, which either allows or prevents the establishment of a persisting Wnt/β-catenin feedback loop and axis formation. Hydra’s almost unlimited regenerative potential is based on Wnt signaling, but so far it is unknown how the injury stimulus is transmitted to discrete patterning fates in head and foot regenerates. We previously identified mitogen-activated protein kinases (MAPKs) among the earliest injury response molecules in Hydra head regeneration. Here, we show that three MAPKs—p38, c-Jun N-terminal kinases (JNKs), and extracellular signal-regulated kinases (ERKs)—are essential to initiate regeneration in Hydra, independent of the wound position. Their activation occurs in response to any injury and requires calcium and reactive oxygen species (ROS) signaling. Phosphorylated MAPKs hereby exhibit cross talk with mutual antagonism between the ERK pathway and stress-induced MAPKs, orchestrating a balance between cell survival and apoptosis. Importantly, Wnt3 and Wnt9/10c, which are induced by MAPK signaling, can partially rescue regeneration in tissues treated with MAPK inhibitors. Also, foot regenerates can be reverted to form head tissue by a pharmacological increase of β-catenin signaling or the application of recombinant Wnts. We propose a model in which a β-catenin-based stable gradient of head-forming capacity along the primary body axis, by differentially integrating an indiscriminate injury response, determines the fate of the regenerating tissue. Hereby, Wnt signaling acquires sustained activation in the head regenerate, while it is transient in the presumptive foot tissue. Given the high level of evolutionary conservation of MAPKs and Wnts, we assume that this mechanism is deeply embedded in our genome.
  • 关键词:enregenerationinjury responseMAPK signalingaxis formationWnt/beta-catenin
国家哲学社会科学文献中心版权所有