首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Effects of Multiscale Mechanical Pulverization on the Physicochemical and Functional Properties of Black Tea
  • 本地全文:下载
  • 作者:Yang Zhang ; Weihua Xiao ; Lujia Han
  • 期刊名称:Foods
  • 电子版ISSN:2304-8158
  • 出版年度:2022
  • 卷号:11
  • 期号:17
  • 页码:1-11
  • DOI:10.3390/foods11172651
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:Black tea leaves were pulverized at an organ-scale (~mm), tissue-scale (500–100 μm) and cell-scale (<50–10 μm) to investigate their physicochemical and functional properties. The results showed that cell-scale powders exhibited a bright brown color compared with organ- or tissue-scale powders with the highest total color difference (∆ E) of 39.63 and an L value of 55.78. There was no obvious difference in the oil-holding capacity (OHC) of the organ- and tissue-scale powders (3.71–3.74 g/g), while the OHC increased significantly to 4.08 g/g in cell-scale powders. The soluble dietary fiber (SDF) content of cell-scale powders increased remarkably to 10.41%, indicating a potential application as a high-SDF food. Further, cell-scale pulverization of black tea enhanced its DPPH scavenging activity and ferric-ion-reducing antioxidant power (FRAP). However, the polyphenol content (13.18–13.88%) and the protein content (27.63–28.09%), as well as the Pb 2+ adsorption capacity (1.97–1.99 mg/g) were not affected by multiscale pulverizations. The mean particle size (D 50) correlated linearly with tap density (TD), color parameters of L and b, SDF content, DPPH scavenging activity and FRAP. The results indicate that black tea powders pulverized at a cell-scale can be used as a soluble fiber-rich functional food additive with a bright color, enhanced OHC and antioxidant capacity.
  • 关键词:multiscale mechanical pulverization;black tea;physicochemical properties;functional properties
国家哲学社会科学文献中心版权所有