期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2022
卷号:119
期号:36
DOI:10.1073/pnas.2206559119
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Significance
In resting state functional magnetic resonance imaging (fMRI), areas showing coherent hemodynamic fluctuations across the brain are operationally defined to be functionally connected. However, it is unknown how the activity of single units residing within a voxel contributes to this network structure. Here we demonstrate a shared but restricted pattern of functional connectivity among neighboring neurons residing in functionally defined face patches. Unexpectedly, such neurons also exhibited a prominent inverse correlation with thalamic structures and brainstem neuromodulatory centers. Single unit maps differed from analogous maps obtained with local field potentials and seed-based fMRI. These findings suggest that during rest, individual cortical neurons have a restricted set of functional connections, which is governed in part by anatomical projections and in part by neuromodulation.
The brain is a highly organized, dynamic system whose network architecture is often assessed through resting functional magnetic resonance imaging (fMRI) functional connectivity. The functional interactions between brain areas, including those observed during rest, are assumed to stem from the collective influence of action potentials carried by long-range neural projections. However, the contribution of individual neurons to brain-wide functional connectivity has not been systematically assessed. Here we developed a method to concurrently measure and compare the spiking activity of local neurons with fMRI signals measured across the brain during rest. We recorded spontaneous activity from neural populations in cortical face patches in the macaque during fMRI scanning sessions. Individual cells exhibited prominent, bilateral coupling with fMRI fluctuations in a restricted set of cortical areas inside and outside the face patch network, partially matching the pattern of known anatomical projections. Within each face patch population, a subset of neurons was positively coupled with the face patch network and another was negatively coupled. The same cells showed inverse correlations with distinct subcortical structures, most notably the lateral geniculate nucleus and brainstem neuromodulatory centers. Corresponding connectivity maps derived from fMRI seeds and local field potentials differed from the single unit maps, particularly in subcortical areas. Together, the results demonstrate that the spiking fluctuations of neurons are selectively coupled with discrete brain regions, with the coupling governed in part by anatomical network connections and in part by indirect neuromodulatory pathways.
关键词:ensimultaneous fMRI and neurophysiologysingle unitsresting stateface patchesbrain networks