期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2022
卷号:119
期号:36
DOI:10.1073/pnas.2202857119
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Significance
It was found that shining natural or artificial sunlight on concentrated solutions of sulfate ions mixed with organics, a mixture commonly found in atmospheric aerosol particles, can generate sulfur-containing radicals under a variety of conditions. This reaction has not previously been characterized in atmospheric chemistry. These reactive radicals can subsequently degrade organic compounds in atmospheric particles, forming a variety of products that stay in the particle water and small molecules that are volatile enough to partition to the gas phase. In particular, this source of sulfur radicals can produce surface-active organosulfates and organic acids.
The sulfate anion radical (SO
4
•–) is known to be formed in the autoxidation chain of sulfur dioxide and from minor reactions when sulfate or bisulfate ions are activated by OH radicals, NO
3 radicals, or iron. Here, we report a source of SO
4
•–, from the irradiation of the liquid water of sulfate-containing organic aerosol particles under natural sunlight and laboratory UV radiation. Irradiation of aqueous sulfate mixed with a variety of atmospherically relevant organic compounds degrades the organics well within the typical lifetime of aerosols in the atmosphere. Products of the SO
4
•– + organic reaction include surface-active organosulfates and small organic acids, alongside other products. Scavenging and deoxygenated experiments indicate that SO
4
•– radicals, instead of OH, drive the reaction. Ion substitution experiments confirm that sulfate ions are necessary for organic reactivity, while the cation identity is of low importance. The reaction proceeds at pH 1–6, implicating both bisulfate and sulfate in the formation of photoinduced SO
4
•–. Certain aromatic species may further accelerate the reaction through synergy. This reaction may impact our understanding of atmospheric sulfur reactions, aerosol properties, and organic aerosol lifetimes when inserted into aqueous chemistry model mechanisms.