首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Nucleation of the destruction complex on the centrosome accelerates degradation of β-catenin and regulates Wnt signal transmission
  • 本地全文:下载
  • 作者:Ryan S. Lach ; Chongxu Qiu ; Erfan Zeyaei Kajbaf
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:36
  • DOI:10.1073/pnas.2204688119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance Liquid–liquid phase separation (LLPS) governs a variety of mesoscale cellular processes. However, less is known about how cells utilize LLPS to drive cellular function. Here, we examined the destruction complex (DC), an organelle which controls Wnt signaling and whose components phase separate. Through a combination of advanced microscopy, CRISPR, computational modeling, and optogenetics, we find that the DC is nucleated by the centrosome and that this nucleation drives efficient signal transduction. Our work not only uncovers a biological function for LLPS but also highlights nucleation as a general method for controlling the function of intracellular condensates. Finally, our findings suggest a thermodynamic coupling between Wnt signal transduction and the cell cycle which could lead to insights into Wnt-driven cancers. Wnt signal transduction is controlled by the destruction complex (DC), a condensate comprising scaffold proteins and kinases that regulate β-catenin stability. Overexpressed DC scaffolds undergo liquid–liquid phase separation (LLPS), but DC mesoscale organization at endogenous expression levels and its role in β-catenin processing were previously unknown. Here, we find that DC LLPS is nucleated by the centrosome. Through a combination of CRISPR-engineered custom fluorescent tags, finite element simulations, and optogenetic tools that allow for manipulation of DC concentration and multivalency, we find that centrosomal nucleation drives processing of β-catenin by colocalizing DC components to a single reaction crucible. Enriching GSK3β partitioning on the centrosome controls β-catenin processing and prevents Wnt-driven embryonic stem cell differentiation to mesoderm. Our findings demonstrate the role of nucleators in controlling biomolecular condensates and suggest tight integration between Wnt signal transduction and the cell cycle.
  • 关键词:enWntdestruction complexoptogeneticsLLPSstem cells
国家哲学社会科学文献中心版权所有