首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Nearly Optimal Tunable MPC Strategies on Embedded Platforms
  • 本地全文:下载
  • 作者:Karol Kiš ; Peter Bakaráč ; Martin Klaučo
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2022
  • 卷号:55
  • 期号:16
  • 页码:326-331
  • DOI:10.1016/j.ifacol.2022.09.045
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe present an embeddable optimization-free application of a near-optimal MPC implementation with continuous tuning capabilities. We propose a strategy combining the advantages of explicit model predictive control with tunable properties that is implementable on embedded platforms with limited memory and computational resources. We consider a neural network (NN) learning procedure to mimic the control actions of an MPC strategy. While acknowledging limited guarantees on the constraints satisfaction with just the NN-based controller, we introduce an optimization-based corrector of the mimicked control action. Such a corrector then steers the control authority of the mimicked controller such that constraints on manipulated and process variables are enforced. To demonstrate the efficacy of the proposed control strategy, a case study implemented on an embedded platform is shown.
  • 关键词:KeywordsData-based optimal controlReal-Time Control ProblemsOptimal Control
国家哲学社会科学文献中心版权所有