期刊名称:Journal of Computational Science and Technology
电子版ISSN:1881-6894
出版年度:2009
卷号:3
期号:1
页码:159-170
DOI:10.1299/jcst.3.159
出版社:The Japan Society of Mechanical Engineers
摘要:A gold (Au) micro-interconnection, which connects through-hole electrodes in a three-dimensional chip-stacking LSI, is composed of several tens of grains. If the size of the interconnection becomes small in comparison with the grain, the anisotropic property of grains influences mechanical reliability. In this study, the stress distribution in the Au micro-interconnection is investigated by finite element method (FEM) analysis. The crystallographic structure of the Au micro-interconnection is obtained by a three-dimensional simulation based on a nucleation and growth model. The FEM analysis shows that the stress is concentrated on the region near the micro- interconnection/substrate interface edge and that a stress singularity exists there. The stress distribution of the micro-interconnection varies because of microscopic factors, which are due to the shape and crystallographic orientation of grains. Statistical evaluations of plural analytical models show that the stress variation approximates a normal distribution.
关键词:Stress Concentration;Stress Singularity;Interface;Anisotropy;Finite Element Method;Multi;Crystal;Statistical Evaluation;Au;Micro-interconnection