期刊名称:Journal of Computational Science and Technology
电子版ISSN:1881-6894
出版年度:2009
卷号:3
期号:1
页码:232-241
DOI:10.1299/jcst.3.232
出版社:The Japan Society of Mechanical Engineers
摘要:In this paper, a mixed-mode interfacial crack in three dimensional bimaterials is analyzed by singular integral equations on the basis of the body force method. In the numerical analysis, unknown body force densities are approximated by the products of the fundamental density functions and power series, where the fundamental density functions are chosen to express a two-dimensional interface crack exactly. The results show that the present method yields smooth variations of mixed mode stress intensity factor along the crack front accurately. The effect of crack shape on the stress intensity factor for 3D interface cracks is also discussed on the basis of present solution. Then, it is found that the stress intensity factors KII and KIII are always insensitive to the varying ratio of shear modulus, and determined by Poisson's ratio alone. Distributions of stress intensity factor are indicated in tables and figures with varying the rectangular shape and Poisson's ratio.
关键词:Stress Intensity Factor;Body Force Method;Interface Crack;Composite Material;Singular Integral Equation