首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Pest population dynamics are related to a continental overwintering gradient
  • 本地全文:下载
  • 作者:Douglas Lawton ; Anders S. Huseth ; George G. Kennedy
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:37
  • DOI:10.1073/pnas.2203230119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance The expansion of pest ranges due to climate change will threaten global agriculture. Winter soil temperature is known to limit pest persistence at higher latitudes. However, few studies have connected overwintering success of soil-dwelling insects with long-term population datasets to investigate how climate change may affect pests’ distributions and population dynamics in the future. Here, we present models demonstrating how greater overwintering survival may expand the range of a serious insect pest. We also highlight the need for projected soil temperature data based on climate change scenarios. To ensure sustainable agricultural production, it is imperative that insect pest range shifts are anticipated to develop solutions that mitigate crop loss in expansion areas. Overwintering success is an important determinant of arthropod populations that must be considered as climate change continues to influence the spatiotemporal population dynamics of agricultural pests. Using a long-term monitoring database and biologically relevant overwintering zones, we modeled the annual and seasonal population dynamics of a common pest, Helicoverpa zea (Boddie), based on three overwintering suitability zones throughout North America using four decades of soil temperatures: the southern range (able to persist through winter), transitional zone (uncertain overwintering survivorship), and northern limits (unable to survive winter). Our model indicates H. zea population dynamics are hierarchically structured with continental-level effects that are partitioned into three geographic zones. Seasonal populations were initially detected in the southern range, where they experienced multiple large population peaks. All three zones experienced a final peak between late July (southern range) and mid-August to mid-September (transitional zone and northern limits). The southern range expanded by 3% since 1981 and is projected to increase by twofold by 2099 but the areas of other zones are expected to decrease in the future. These changes suggest larger populations may persist at higher latitudes in the future due to reduced low-temperature lethal events during winter. Because H. zea is a highly migratory pest, predicting when populations accumulate in one region can inform synchronous or lagged population development in other regions. We show the value of combining long-term datasets, remotely sensed data, and laboratory findings to inform forecasting of insect pests.
  • 关键词:enbollwormcorn earwormdispersallong-term monitoringmigration
国家哲学社会科学文献中心版权所有