首页    期刊浏览 2024年09月15日 星期日
登录注册

文章基本信息

  • 标题:Investigation of particles deposition in a square duct using optimized roughness elements for a sustainable environment
  • 本地全文:下载
  • 作者:Muhammad Farhan ; Hafiz M Rizwan ; Muhammad Farooq
  • 期刊名称:Advances in Mechanical Engineering
  • 印刷版ISSN:1687-8140
  • 电子版ISSN:1687-8140
  • 出版年度:2021
  • 卷号:13
  • 期号:9
  • 页码:1-10
  • DOI:10.1177/16878140211049029
  • 语种:English
  • 出版社:Sage Publications Ltd.
  • 摘要:A sustainable environment is one of the major challenges in developing countries especially in populated regions due to the industrialization and expansion of urban areas. The industries emit particulate matter into the atmosphere that is harmful to human health. There is a need for an efficient particle separation mechanism to improve indoor air quality. This paper presents a numerical investigation of particles deposition in a square duct with variable roughness elements. The working fluid was taken as a mixture of air and inert particles. The Reynolds Stress Model (RSM) and Discrete Particle-phase Model (DPM) were used to simulate the particle-laden flow to analyze the deposition and velocity of the particles in the duct. The diameter of the particles is taken as 5 µm. The ratio of roughness height to the diameter (r/D) ranged from 0.024 and 0.101 and the spacing to the diameter ratio (s/D) varied between 9.8 and 39.23. It was found that the roughness height has a significant effect on the fluid flow as compared to the spacing between the elements. As a result, more uniform vortices are developed across the elements increasing fluid velocity from 10 to 14 m/s, while the deposition and velocity of the particles were increased by 14% and 8%, respectively. Accordingly, the particles deposition technique helps provide clean indoor air for better environmental sustainability.
  • 关键词:Particulate flow;roughness elements;deposition of particles;Reynolds stress model;numerical investigation
国家哲学社会科学文献中心版权所有