摘要:With the wide application of redundant manipulators, sharing a working space with humans and dealing with uncertainty seems an inevitable problem, especially in the dynamic and unstructured domain. How to deal with obstacle avoidance is of particular importance that robots and humans/environments are safe interactions to fulfill the complex cooperating tasks. This paper aimed at solving the problem of multiple points avoidance for the reaction motion based on the skeleton algorithm in unstructured and dynamic environments. A method named “sensor-based skeleton modeling and MVEEs approach of the redundant manipulator for the reaction motion” is proposed. The extraction of skeleton information from image is obtained to calculate the distances of the multiple control points and establish the repulsion in this method. Afterward, the force Jacobian related to the priority weighting factors is calculated and then a reaction force with damping term is established, which is corresponding nominal torque commands. For the redundant manipulator, the joint angles are obtained through torque iteration instead of inverse kinematics to reduce calculation cost. Finally, the method was tested by a 7-DOF manipulator in the ROS framework. The obtained results indicate that the method in this method can realize dynamic obstacle avoidance and time cost reduction.