首页    期刊浏览 2024年10月05日 星期六
登录注册

文章基本信息

  • 标题:Mussel-Inspired and Bioclickable Peptide Engineered Surface to Combat Thrombosis and Infection
  • 本地全文:下载
  • 作者:Xiaohui Mou ; Hongbo Zhang ; Hua Qiu
  • 期刊名称:Research
  • 电子版ISSN:2639-5274
  • 出版年度:2022
  • 卷号:2022
  • 页码:1-14
  • DOI:10.34133/2022/9780879
  • 语种:English
  • 出版社:American Association for the Advancement of Science
  • 摘要:Thrombosis and infections are the two major complications associated with extracorporeal circuits and indwelling medical devices, leading to significant mortality in clinic. To address this issue, here, we report a biomimetic surface engineering strategy by the integration of mussel-inspired adhesive peptide, with bio-orthogonal click chemistry, to tailor the surface functionalities of tubing and catheters. Inspired by mussel adhesive foot protein, a bioclickable peptide mimic (DOPA)4-azide-based structure is designed and grafted on an aminated tubing robustly based on catechol-amine chemistry. Then, the dibenzylcyclooctyne (DBCO) modified nitric oxide generating species of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelated copper ions and the DBCO-modified antimicrobial peptide (DBCO-AMP) are clicked onto the grafted surfaces via bio-orthogonal reaction. The combination of the robustly grafted AMP and Cu-DOTA endows the modified tubing with durable antimicrobial properties and ability in long-term catalytically generating NO from endogenous s-nitrosothiols to resist adhesion/activation of platelets, thus preventing the formation of thrombosis. Overall, this biomimetic surface engineering technology provides a promising solution for multicomponent surface functionalization and the surface bioengineering of biomedical devices with enhanced clinical performance.
国家哲学社会科学文献中心版权所有