首页    期刊浏览 2024年07月09日 星期二
登录注册

文章基本信息

  • 标题:Cross-Scale Synthesis of Organic High- Semiconductors Based on Spiro-Gridized Nanopolymers
  • 本地全文:下载
  • 作者:Dongqing Lin ; Wenhua Zhang ; Hang Yin
  • 期刊名称:Research
  • 电子版ISSN:2639-5274
  • 出版年度:2022
  • 卷号:2022
  • 页码:1-12
  • DOI:10.34133/2022/9820585
  • 语种:English
  • 出版社:American Association for the Advancement of Science
  • 摘要:High dielectric constants in organic semiconductors have been identified as a central challenge for the improvement in not only piezoelectric, pyroelectric, and ferroelectric effects but also photoelectric conversion efficiency in OPVs, carrier mobility in OFETs, and charge density in charge-trapping memories. Herein, we report an ultralong persistence length ( nm) effect of spiro-fused organic nanopolymers on dielectric properties, together with excitonic and charge carrier behaviors. The state-of-the-art nanopolymers, namely, nanopolyspirogrids (NPSGs), are synthesized via the simple cross-scale Friedel-Crafts polygridization of A2B2-type nanomonomers. The high dielectric constant () of NPSG is firstly achieved by locking spiro-polygridization effect that results in the enhancement of dipole polarization. When doping into a polystyrene-based dielectric layer, such a high- feature of NPSG increases the field-effect carrier mobility from 0.20 to 0.90 cm2 V-1 s-1 in pentacene OFET devices. Meanwhile, amorphous NPSG film exhibits an ultralow energy disorder (<50 meV) for an excellent zero-field hole mobility of , surpassing most of the amorphous -conjugated polymers. Organic nanopolymers with high dielectric constants open a new way to break through the bottleneck of efficiency and multifunctionality in the blueprint of the fourth-generation semiconductors.
国家哲学社会科学文献中心版权所有