首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Prediction of player position for talent identification in association netball: a regression-based approach
  • 本地全文:下载
  • 作者:Nur Hazwani Jasni ; Aida Mustapha ; Siti Solehah Tenah
  • 期刊名称:IJAIN (International Journal of Advances in Intelligent Informatics)
  • 印刷版ISSN:2442-6571
  • 电子版ISSN:2548-3161
  • 出版年度:2022
  • 卷号:8
  • 期号:1
  • 页码:84-96
  • DOI:10.26555/ijain.v8i1.707
  • 语种:English
  • 出版社:Universitas Ahmad Dahlan
  • 摘要:Among the challenges in industrial revolutions, 4.0 is managing organizations’ talents, especially to ensure the right person for the position can be selected. This study is set to introduce a predictive approach for talent identification in the sport of netball using individual player qualities in terms of physical fitness, mental capacity, and technical skills. A data mining approach is proposed using three data mining algorithms, which are Decision Tree (DT), Neural Network (NN), and Linear Regressions (LR). All the models are then compared based on the Relative Absolute Error (RAE), Mean Absolute Error (MAE), Relative Square Error (RSE), Root Mean Square Error (RMSE), Coefficient of Determination (R2), and Relative Square Error (RSE). The findings are presented and discussed in light of early talent spotting and selection. Generally, LR has the best performance in terms of MAE and RMSE as it has the lowest values among the three models.
国家哲学社会科学文献中心版权所有