期刊名称:IJAIN (International Journal of Advances in Intelligent Informatics)
印刷版ISSN:2442-6571
电子版ISSN:2548-3161
出版年度:2022
卷号:8
期号:1
页码:45-57
DOI:10.26555/ijain.v8i1.692
语种:English
出版社:Universitas Ahmad Dahlan
摘要:Deep learning has shown promising results in various text-based classification tasks. However, deep learning performance is affected by the number of data, i.e., when the number of data is small, deep learning algorithms do not perform well, and vice versa. Classical machine learning algorithms commonly work well for a few data, and their performance reaches an optimal value and does not increase with the increase in sample data. Therefore, this study aimed to compare the performance of classical machine learning and deep learning methods to detect temperament based on Indonesian Twitter. In this study, the proposed Indonesian Linguistic Inquiry and Word Count were employed to analyze the context of Twitter. The classical machine learning methods implemented were support vector machine and K-nearest neighbor, whereas the deep learning method employed was a convolutional neural network (CNN) with three different architectures. Both learning methods were implemented using multiclass classification and one versus all (OVA) multiclass classification. The highest average f-measure was 58.73%, obtained by CNN OVA with a pool size of 3, a dropout value of 0.7, and a learning rate value of 0.0007.