首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Emognition dataset: emotion recognition with self-reports, facial expressions, and physiology using wearables
  • 本地全文:下载
  • 作者:Stanisław Saganowski ; Joanna Komoszyńska ; Maciej Behnke
  • 期刊名称:Scientific Data
  • 电子版ISSN:2052-4463
  • 出版年度:2022
  • 卷号:9
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41597-022-01262-0
  • 语种:English
  • 出版社:Nature Publishing Group
  • 摘要:the Emognition dataset is dedicated to testing methods for emotion recognition (ER) from physiological responses and facial expressions . We collected data from 43 participants who watched short flm clips eliciting nine discrete emotions: amusement, awe, enthusiasm, liking, surprise, anger, disgust, fear, and sadness . Three wearables were used to record physiological data: EEG, BVP (2x), HR, EDA, SKT, ACC (3x), and GYRO (2x); in parallel with the upper-body videos . After each flm clip, participants completed two types of self-reports: (1) related to nine discrete emotions and (2) three afective dimensions: valence, arousal, and motivation . The obtained data facilitates various ER approaches, e .g ., multimodal ER, EEG- vs . cardiovascular-based ER, discrete to dimensional representation transitions . The technical validation indicated that watching flm clips elicited the targeted emotions . It also supported signals’ high quality.
国家哲学社会科学文献中心版权所有