首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:A benchmark dataset for Hydrogen Combustion
  • 本地全文:下载
  • 作者:Xingyi Guan ; Akshaya Das ; Christopher J .Stein
  • 期刊名称:Scientific Data
  • 电子版ISSN:2052-4463
  • 出版年度:2022
  • 卷号:9
  • 期号:1
  • 页码:1-7
  • DOI:10.1038/s41597-022-01330-5
  • 语种:English
  • 出版社:Nature Publishing Group
  • 摘要:The generation of reference data for deep learning models is challenging for reactive systems, and more so for combustion reactions due to the extreme conditions that create radical species and alternative spin states during the combustion process . Here, we extend intrinsic reaction coordinate (IRC) calculations with ab initio MD simulations and normal mode displacement calculations to more extensively cover the potential energy surface for 19 reaction channels for hydrogen combustion . A total of ~290,000 potential energies and ~1,270,000 nuclear force vectors are evaluated with a high quality range-separated hybrid density functional, ωB97X-V, to construct the reference data set, including transition state ensembles, for the deep learning models to study hydrogen combustion reaction .
国家哲学社会科学文献中心版权所有