首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:MusMorph, a database of standardized mouse morphology data for morphometric meta-analyses
  • 本地全文:下载
  • 作者:Jay Devine ; MartaVidal-García ; Wei Liu
  • 期刊名称:Scientific Data
  • 电子版ISSN:2052-4463
  • 出版年度:2022
  • 卷号:9
  • 期号:1
  • 页码:1-18
  • DOI:10.1038/s41597-022-01338-x
  • 语种:English
  • 出版社:Nature Publishing Group
  • 摘要:Complex morphological traits are the product of many genes with transient or lasting developmental efects that interact in anatomical context . Mouse models are a key resource for disentangling such efects, because they ofer myriad tools for manipulating the genome in a controlled environment . Unfortunately, phenotypic data are often obtained using laboratory-specifc protocols, resulting in self-contained datasets that are difcult to relate to one another for larger scale analyses . To enable meta-analyses of morphological variation, particularly in the craniofacial complex and brain, we created MusMorph, a database of standardized mouse morphology data spanning numerous genotypes and developmental stages, including E10 .5, E11 .5, E14 .5, E15 .5, E18 .5, and adulthood . To standardize data collection, we implemented an atlas-based phenotyping pipeline that combines techniques from image registration, deep learning, and morphometrics . Alongside stage-specifc atlases, we provide aligned micro-computed tomography images, dense anatomical landmarks, and segmentations (if available) for each specimen (N = 10,056) . Our workfow is open-source to encourage transparency and reproducible data collection . The MusMorph data and scripts are available on FaceBase (www.facebase.org, https://doi.org/10.25550/3-HXMC) and GitHub (https://github.com/jaydevine/MusMorph) .
国家哲学社会科学文献中心版权所有