首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Source imaging of high-density visual evoked potentials with multi-scale brain parcellations and connectomes
  • 本地全文:下载
  • 作者:David Pascucci ; Sebastien Tourbier ; Joan Rué -Queralt
  • 期刊名称:Scientific Data
  • 电子版ISSN:2052-4463
  • 出版年度:2022
  • 卷号:9
  • 期号:1
  • 页码:1-7
  • DOI:10.1038/s41597-021-01116-1
  • 语种:English
  • 出版社:Nature Publishing Group
  • 摘要:We describe the multimodal neuroimaging dataset VEPCON (OpenNeuro Dataset ds003505) . It includes raw data and derivatives of high-density EEG, structural MRI, difusion weighted images (DWI) and single-trial behavior (accuracy, reaction time) . Visual evoked potentials (VEPs) were recorded while participants (n = 20) discriminated briefy presented faces from scrambled faces, or coherently moving stimuli from incoherent ones . EEG and MRI were recorded separately from the same participants . The dataset contains raw EEG and behavioral data, pre-processed EEG of single trials in each condition, structural MRIs, individual brain parcellations at 5 spatial resolutions (83 to 1015 regions), and the corresponding structural connectomes computed from fber count, fber density, average fractional anisotropy and mean difusivity maps . For source imaging, VEPCON provides EEG inverse solutions based on individual anatomy, with Python and Matlab scripts to derive activity time-series in each brain region, for each parcellation level . The BIDS-compatible dataset can contribute to multimodal methods development, studying structure-function relations, and to unimodal optimization of source imaging and graph analyses, among many other possibilities .
国家哲学社会科学文献中心版权所有