首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:HistoML, a markup language for representation and exchange of histopathological features in pathology images
  • 本地全文:下载
  • 作者:Peiliang Lou ; Chunbao Wang ; Ruifeng Guo
  • 期刊名称:Scientific Data
  • 电子版ISSN:2052-4463
  • 出版年度:2022
  • 卷号:9
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41597-022-01505-0
  • 语种:English
  • 出版社:Nature Publishing Group
  • 摘要:the study of histopathological phenotypes is vital for cancer research and medicine as it links molecular mechanisms to disease prognosis. It typically involves integration of heterogenous histopathological features in whole-slide images (WSI) to objectively characterize a histopathological phenotype. However, the large-scale implementation of phenotype characterization has been hindered by the fragmentation of histopathological features, resulting from the lack of a standardized format and a controlled vocabulary for structured and unambiguous representation of semantics in WSIs. To fll this gap, we propose the Histopathology Markup Language (HistoML), a representation language along with a controlled vocabulary (Histopathology Ontology) based on Semantic Web technologies. Multiscale features within a WSI, from single-cell features to mesoscopic features, could be represented using HistoML which is a crucial step towards the goal of making WSIs fndable, accessible, interoperable and reusable (FaIR). We pilot HistoML in representing WSIs of kidney cancer as well as thyroid carcinoma and exemplify the uses of HistoML representations in semantic queries to demonstrate the potential of HistoML-powered applications for phenotype characterization.
国家哲学社会科学文献中心版权所有