首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Kinetic discretization of one-dimensional nonlocal flow models
  • 本地全文:下载
  • 作者:Mihály A. Vághy ; Mihály Kovács ; Gábor Szederkényi
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2022
  • 卷号:55
  • 期号:20
  • 页码:67-72
  • DOI:10.1016/j.ifacol.2022.09.073
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe show that one-dimensional nonlocal flow models in PDE form with Lighthill-Whitham-Richards flux supplemented with appropriate in- and out-flow terms can be spatially discretized with a finite volume scheme to obtain formally kinetic models with physically meaningful reaction graph structure. This allows the utilization of the theory of chemical reaction networks, as demonstrated here via the stability analysis of a flow model with circular topology. We further propose an explicit time discretization and a Courant-Friedrichs-Lewy condition ensuring many advantageous properties of the scheme. Additional characteristics, including monotonicity and the total variation diminishing property are also discussed.
  • 关键词:Keywordscontrol of hyperbolic systemsconservation lawskinetic modelingmodeling for controlstability of distributed parameter systemsstability of nonlinear systems
国家哲学社会科学文献中心版权所有