摘要:In this study, to predict unsteady temperature distributions, POD-DNN was utilized, where DNN was trained to predicted coefficients of POMs. Two strategies, flatten POD-DNN and nested POD-DNN were compared. The flatten POD-DNN provided high accuracy if training data is sufficient, but otherwise very inaccurate. The nested POD-DNN roughly predicted the development of temperature fields even training data was small. The results showed their different sensitivities to the training data size.