期刊名称:International Journal of Distributed Sensor Networks
印刷版ISSN:1550-1329
电子版ISSN:1550-1477
出版年度:2022
卷号:18
期号:6
页码:1-8
DOI:10.1177/1550147718781751
语种:English
出版社:Hindawi Publishing Corporation
摘要:Block compressive sensing of image results in blocking artifacts and blurs when reconstructing images. To solve this problem, we propose an adaptive block compressive sensing framework using error between blocks. First, we divide image into several non-overlapped blocks and compute the errors between each block and its adjacent blocks. Then, the error between blocks is used to measure the structure complexity of each block, and the measurement rate of each block is adaptively determined based on the distribution of these errors. Finally, we reconstruct each block using a linear model. Experimental results show that the proposed adaptive block compressive sensing system improves the qualities of reconstructed images from both subjective and objective points of view when compared with image block compressive sensing system.
关键词:Compressive sensing;adaptive sampling;error between blocks;linear recovery