首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Inositol hexakisphosphate kinase-2 non-catalytically regulates mitophagy by attenuating PINK1 signaling
  • 本地全文:下载
  • 作者:Latika Nagpal ; Michael D. Kornberg ; Solomon H. Snyder
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:14
  • DOI:10.1073/pnas.2121946119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance Inositol pyrophosphates are versatile messenger molecules containing the energetic pyrophosphate bond. One of the principal enzymes generating the inositol pyrophosphate IP 7 (5-diphosphoinositolpentakisphosphate) is inositol hexakisphosphate kinase 2 (IP6K2). Previous work has shown that IP6K2 is neuroprotective and maintains mitochondrial respiration. We now report that loss of IP6K2 leads to increased mitochondrial fission and mitophagy. Regulation of mitochondrial dynamics by IP6K2 depends on the protein PINK1 and, interestingly, is independent of IP6K2 enzymatic activity. These findings provide mechanistic insight into the regulation of mitochondrial function by IP6K2, which has implications for neuroprotection and mitochondrial physiology more generally. Inositol pyrophosphates, such as 5-diphosphoinositol pentakisphosphate (IP 7), are generated by a family of inositol hexakisphosphate kinases (IP6Ks), of which IP6K2 has been implicated in various cellular functions including neuroprotection. Absence of IP6K2 causes impairment of oxidative phosphorylation regulated by creatine kinase-B. In the present study, we show that IP6K2 is involved in attenuation of PINK1-mediated mitochondrial autophagy (mitophagy) in the brain. Up-regulation of dynamin-related protein (Drp-1), as well as increased expression of mitochondrial biogenesis markers (PGC1-α and NRF-1) in the cerebella of IP6K2-deleted mice (IP6K2-knockout), point to the involvement of IP6K2 in the regulation of mitochondrial fission. Knockdown of IP6K2 also leads to augmented glycolysis, potentially as a compensatory mechanism for decreased mitochondrial respiration. Overexpressing IP6K2 as well as IP6K2-kinase dead mutant in IP6K2-knockdown N2A cells reverses the expression of mitophagy markers, demonstrating that IP6K2-induced mitoprotection is catalytically/kinase independent. IP6K2 supplementation in K2-PINK1 double-knockdown N2A cells fails to reverse the expression of the mitophagic marker, LC3-II, indicating that the mitoprotective effect of IP6K2 is dependent on PINK1. Overall, our study reveals a key neuroprotective role of IP6K2 in the prevention of PINK1-mediated mitophagy in the brain.
  • 关键词:eninositol phosphatemitophagyPINK1neuroprotectionmitochondrial biogenesis
国家哲学社会科学文献中心版权所有